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ABSTRACT: Optically active 1-alkoxy- and 1-amino-
3-phospholene oxides were synthesized by the re-
action of the corresponding 1-chloro-3-phospholene
oxides with (1R,2S,5R)-(–)menthol and (S)-(–)-α-
phenylethylamine. The 3-methyl-3-phospholene oxides
were subjected to dichlorocyclopropanation under
liquid–liquid phase transfer catalytic conditions to
afford the 3-phosphabicyclo[3.1.0]hexane 3-oxides
as a mixture of four diastereomers. Thermol-
ysis of the menthyl-phosphabicyclohexane oxides
led to the corresponding 1,2-dihydrophosphinine
oxide as a diastereomeric mixture of two double-
bond isomers. As a result of additional steps, the
dichlorocarbene addition reaction of the 1-menthyl-
3,4-dimethyl-3-phospholene oxide resulted in even-
tually, the formation of a 4-dichloromethylene-1,4-
dihydrophosphinine oxide. C© 2010 Wiley Periodicals,
Inc. Heteroatom Chem 21:271–277, 2010; Published on-
line in Wiley InterScience (www.interscience.wiley.com).
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INTRODUCTION

These days the P-heterocyclic discipline is of in-
creasing importance [1,2]. The P-heterocycles are
used as building blocks in synthetic organic chem-
istry, as catalysts, as ligands in transition metal
complexes, and as biologically active substrates [1–
3]. The most easily available 3-phospholene oxides
served well as starting materials for six-membered
P-heterocycles [4,5]. A two-step ring enlargement in-
cluding 3-phosphabicyclo[3.1.0]hexane 3-oxides as
the intermediates made available 1,2-dihydro- and
1,2,3,6-tetrahydrophosphinine oxides [4,5]. Other
derivatives including 1,4-dihydrophosphinine oxides
were also synthesized [5]. All of the P-chiral hetero-
cycles prepared were racemates [4,5]. Petrusiewicz
and his co-workers were the first who devel-
oped methods for the synthesis of optically active
P-heterocycles [6–13]. Fogassy et al. including one
of the authors of this paper have recently elabo-
rated the simple resolution of 3-phospholene oxides
via molecule complexes and coordination complexes
[14–17]. Ring enlargement of the antipodes of the 3-
phospholene oxides may obviously lead to optically
active 1,2-dihydrophosphinine oxides.

In this paper, we describe the preparation of
optically active 3-phospholene oxides by substitu-
tion at the phosphorus atom and their conversion
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to 3-phosphabicyclo[3.1.0]hexane 3-oxides, as well
as 1,2- and 1,4-dihydrophosphinine oxides.

RESULTS AND DISCUSSION

In our efforts to synthesize optically active
P-heterocycles, we utilized (1R,2S,5R)-(–)-menthol
and (S)-(–)-α-phenylethylamine as the chiral-
building blocks. 1-Hydroxy-3-methyl-3-phospholene
oxide 1 was converted to the corresponding phos-
phinic chloride (2) by reaction with thionyl chlo-
ride in chloroform. Intermediate 2 was then
reacted with (1R,2S,5R)-(–)-menthol and (S)-(–)-α-
phenylethylamine in toluene, using triehylamine or
one more equivalent of the chiral amine itself as the
base to give cycloalkyloxy- and aminophospholene
oxides 3a and 3b, respectively (Scheme 1). The sub-
stituted phospholene oxides (3a and 3b) were ob-
tained as a 1:1 mixture of two diastereomers due
to the P-chirality of chlorophospholene oxide 2 and

the C-chiral center, or fixed C-chiral centers in the
nucleophilic reactants.

Then 3-methyl-3-phospholene oxide 3a was sub-
jected to ring enlargement by the “dichlorocar-
bene” method [4]. According to this method, in
the first step, dichlorocarbene, generated from chlo-
roform by aqueous NaOH under phase transfer
catalytic conditions, was added on the double
bond of the phospholene oxide (3a). Both diastere-
omers of the phospholene oxide (3a) afforded the
3-phosphabicyclo[3.1.0]hexane 3-oxide (4a) as a
mixture of A and B isomers; consequently, the
dichlorocarbene adduct (4a) was obtained as a mix-
ture of four isomers (Scheme 1). The assignment of
the stereostructures to isomers A and B is tentative.
Partial separation of the diastereomers was possible;
column chromatography led to a fraction consisting
of 50% of 4A1a and 50% of 4A2a.

Dichlorocyclopropanation of phenylethy-
laminophospholene oxide 3b was also accomplished
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under liquid–liquid phase transfer catalytic con-
ditions. In this case, the corresponding dichloro-
carbene adduct (4b) was again formed as four
isomers (Scheme 1), but probably due to hydrolytic
side-reactions the yield was moderate. In the
earlier described liquid–liquid phase dichloro-
cyclopropanation reaction of 1-diethylamino-3-
methyl-3-phospholene oxide, the diastereomer
containing the dichlorocyclopropane ring and
the oxygen of the P=O moiety in the trans dis-
position was assumed to be the major isomer
[18].

The diasteromers of racemic 1-[(1′ R,2′S,5′ R)-
menthyloxy]-3-methyl-3-phospholene oxide 3a were
separated by the method elaborated by us for the res-
olution of 3-phospholene 1-oxide derivatives [14,15].
According to this method, 0.5 equiv of (–)-TADDOL
derivative I or II was added to the ethyl acetate
solution of menthyloxy-phospholene oxide 3a. Af-
ter the addition of hexane to the hot solution, the
supramolecular formation (–)-3a·(–)-I or (–)-3a·(–)-
II precipitated. After the first and second recrystal-
lization, complex (–)-3a·(–)-I was obtained in a yield
of 64% with an ee of 90% and in a yield of 25%
with an ee of >99%, respectively. Recrystallization
of complex (–)-3a·(–)-II led to a 45% yield and 90%
ee. Hence, the use of TADDOL I was more efficient
than “spiro TADDOL” II. The phospholene oxide
(–)-3a was regenerated by flash column chromatog-
raphy of the supramolecular complexes (–)-3a·(–)-I
and (–)-3a·(–)-II.

In the next stage, we carried out the second
step of the ring enlargement, that is the thermal
opening of the dichlorocyclopropane ring. Thermol-
ysis of the 3-phosphabicyclo[3.1.0]hexane 3-oxide 4a
was accomplished in boiling toluene in the pres-
ence of 1 equiv of triethylamine to furnish the 1,2-
dihydrophosphinine oxide 5a as a ca 3:1 mixture of
double-bond isomers A and B (Scheme 3). It is worth
mentioning that the diastereomeric composition of
the starting material (4a) did not complicate the sit-
uation, as the dihydrophosphinine oxides of type 5
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are in any case formed as a ca 3:1 mixture of two
double-bond isomers [4,5].

Beside the optically active 3-methyl-3-
phospholene oxides (3a and 3b), the analogous
3,4-dimethyl-3-phospholene oxides (8a and 8b)
were also prepared. In this instance, however, the
corresponding phosphinic chloride 7 was obtained
from 1-ethoxy-3,4-dimethyl-3-phospholene oxide
6 by a reaction with phosphorus pentachloride.
Reaction of intermediate 7 with (1R,2S,5R)-(–)-
menthol and (S)-(–)-α-phenylethylamine provided
phospholene oxides 8a and 8b, respectively, as
single isomers (Scheme 4).

The treatment of phospholene oxide 8a with
NaOH/H2O-chloroform under phase transfer cat-
alytic conditions resulted, eventually 4-dichloro-
methylene-1,4-dihydrophosphinine oxide 12a
(Scheme 4). The reaction sequence followed an ear-
lier protocol [4,19], according to which the primarily
formed dichlorocarbene adduct (in the present case
9a) is not stable under the conditions of the reaction
and undergoes a spontaneous cyclopropane ring
opening to afford and 1,4-dihydrophosphinine oxide
(in this case 10a). Then, the dihydrophosphinine
oxide may be the subject of a second series of trans-
formation with the excess of the reagents present
to give a 1,4-dihydrophosphinine oxide (in this case
12a) via the corresponding dichlorocarbene adduct
(in this case 11a) (Scheme 4). The difference in
the stability of monomethyl-phosphabicyclohexane
4 and that of dimethyl derivative 9 is the conse-
quence of the number of the methyl groups on the
skeleton. The special opening of the cyclopropane
ring in intermediate 11 to result in an exocyclic
4-dichloromethylene group is also the consequence
of the additional methyl group. The novel mech-
anism is under evaluation by quantum chemical
calculations [20].

The new 3-phospholene oxides 3a, 3b, 8a, and
8b, 3-phosphabicyclo[3.1.0]hexane oxides 4a and
4b, dihydrophosphinine oxides 5a and 12a were
characterized by 31P, 13C, and 1H NMR, as well as
mass spectroscopical methods.

In conclusion, eight new optically active
P-heterocycles comprising four 3-phospholene ox-
ides, two 3-phosphabicyclo[3.1.0]hexane 3-oxides, a
1,2- and a 1,4-dihydrophosphinine oxide have been
described that can be used as P-ligands after deoxy-
genation.

EXPERIMENTAL

The 31P, 13C, and 1H NMR spectra were taken on a
Bruker DRX-500 spectrometer operating at 202.4,
125.7, and 500 MHz, respectively. Chemical shifts

Heteroatom Chemistry DOI 10.1002/hc
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are downfield relative to 85% H3PO4 and TMS. The
couplings are given in hertz. Mass spectrometry was
performed on a ZAB-2SEQ instrument.

Synthesis of 1-[(1R,2S,5R)-Menthyloxy]-3-
methyl-3-phospholene 1-oxide (3a)

To 13.2 g (100.0 mmol) of 1-hydroxy-3-methyl-3-
phospholene 1-oxide (1) in 40 mL of chloroform,
9.0 mL (124.0 mmol) of thionyl chloride was added
and the solution was stirred for 16 h. After evap-
oration of the volatiles, the residue was taken up
in 300 mL of toluene. To the solution so obtained,
13 mL (102.0 mmol) of triethylamine and 15.6 g
(100 mmol) of (1R,2S,5R)-(–)-menthol were added
and the mixture was stirred at 26◦C for 16 h. After
filtration, the product was purified by column chro-
matography (silica gel, 2% methanol in chloroform)
to give 13.5 g (50%) of 3a as a 1:1 mixture of two
diastereomers.

[α]25
D = −44.4 (c 1, CHCl3); 1H NMR (CDCl3)

δ 0.82 (d, J = 6.6, 3H, C5′ CH3), 0.92 (d, J = 6.6,
6H, CH(CH3)2), 1.80 (s, 3H, C3 CH3), 2.30 2.60 (m,
4H, CH2PCH2), 4.15–4.35 (m, 2H, OCH), 5.52 (d,
J = 35.4, 1H, C4H); HRMS, [M + H]+

found = 271.1810,
C15H28O2P requires 271.1827.

Isomer A: 31P NMR (CDCl3) δ 73.28; 13C NMR
(CDCl3) δ 15.9 (C5′ CH3),a 20.7 (J = 3.6, C3 CH3),b

21.0 (CHCH3), 22.0 (CHCH3), 23.1 (C3′), 25.8 (C5′),
31.4 (J = 88.9, C5),c 31.5 (CHMe2), 34.1 (C4′), 35.3 (J
= 92.0, C2),d 43.5 (C6′), 48.5 (J = 6.3, C2′),e 76.7 (J =
7.5, C1′), 120.2 (J = 11.1, C4),f 136.4 (J = 16.8, C3)g.

Isomer B: 31P NMR (CDCl3) δ 73.33; 13C NMR
(CDCl3) δ 16.0 (C5′ CH3),a 20.9 (J = 3.6, C3 CH3),b

21.0 (CHCH3), 22.0 (CHCH3), 23.1 (C3′), 25.8 (C5′),
31.5 (CHMe2), 32.6 (J = 88.4, C5),c 34.0 (J = 92.5,
C2),d 34.1 (C4′), 43.5 (C6′), 48.5 (J = 6.3, C2′),e 76.7
(J = 7.5, C1′), 120.5 (J = 10.7, C4),f 136.4 (J = 16.8,
C3)g.

a−gmay be reversed

Resolution of 1-[(1′R, 2′S, 5′R-Menthyloxy]-3-
methyl-3-phospholene 1-oxide (3a) using
(–)-TADDOL (I)

To 0.21 g (0.77 mmol) of racemic 1-[(1′ R,2′S,5′ R)-
menthyloxy]-3-methyl-3-phospholene oxide (3a)
and 0.18 g (0.38 mmol) of (–)-TADDOL (I) in 0.2 mL
of hot ethyl acetate, 2 mL of hexane was added.
After the addition, colorless crystals of the com-
plex started to appear immediately. After 2 h, the
crystals were separated by filtration to give 0.20 g
(71%) of complex [(–)-3a·(–)-I] with an ee of 71%.
The complex was further purified by two recrystal-
lizations from ethyl acetate–hexane (0.2 mL/1 mL)
to afford complex (–)-3a·(–)-I in a yield of 64%
with an ee of 90% and in a yield of 25% with
an ee of >99%, respectively. Column chromatogra-
phy (silica gel, chloroform-methanol) of the com-
plex regenerated 18 mg (25%) of the enantiomer-
ically pure (–)-1-[(1′ R,2′S,5′ R)-menthyl]-3-methyl-3-
phospholene 1-oxide [(–)-(3a)]; ee >99%; [α]25

D =
−77.6 (c 0.4, CHCl3); 31P NMR (CDCl3) δ 73.2.

Synthesis of 1-[(1S)-1-Phenylethylamino]-3-
methyl-3-phospholene l-oxide (3b)

To 6.6 g (50.0 mmol) of 1-hydroxy-3-methyl-3-
phospholene 1-oxide (1) in 20 mL of chloroform,

Heteroatom Chemistry DOI 10.1002/hc
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4.5 mL (62.0 mmol) of thionyl chloride was added
and the solution was stirred for 16 h. After evap-
oration of the volatiles, the residue was taken up
in 150 mL of toluene. To the solution so obtained,
13 mL (102.0 mmol) of (S)-α-phenylethylamine was
added and the mixture was stirred for 16 h. After
filtration, the product was purified by column chro-
matography (silica gel, 3% methanol in chloroform)
to give 8.8 g (75%) of 3b as a 1:1 mixture of two
diastereomers.

[α]25
D = −26.8(c 2, CHCl3); 1H NMR (CDCl3) δ

1.52 (d, 3H, J = 6.6, CHCH3), 1.68 and 1.70 (s,
3H, C3 CH3, isomer A and B), 2.00–2.55 (m, 4H,
CH2PCH2), 2.91 (bs, 1H, NH), 4.30–4.50 (m, 1H, CH),
5.44 (d, J = 33.6, 1H, C4H), 7.20–7.39 (m, 5H, Ar);
HRMS, [M + H]+

found = 236.1192, C13H19NOP requires
236.1204.

Isomer A: 31P NMR (CDCl3) δ 62.0; 13C NMR
(CDCl3) δ 20.1 (CHCH3),a 25.5 (J = 3.1, C3 CH3),b

31.9 (J = 81.4, C2),c 34.6 (J = 85.2, C5),d 50.2
(CHMe),e 120.2 (J = 9.5, C3),f 125.6 (C2′),∗126.7 (C4′),
128.1 (C3′),∗ 136.3 (J = 11.1, C4),g 145.0 (C1′); ∗may
be reversed.

Isomer B: 31P NMR (CDCl3) δ 62.5; 13C NMR
(CDCl3) δ 20.3 (CHCH3),a 25.6 (J = 3.3, C3 CH3),b

32.4 (J = 81.2, C2),c 35.2 (J = 84.3, C5),d 50.4
(CHMe),e 120.3 (J = 9.3, C3),f 125.6 (C2′),∗ 126.7 (C4′),
128.1 (C3′),∗ 136.1 (J = 11.2, C4),g 145.0 (C1′); ∗may
be reversed.

a−gmay be reversed.

Synthesis of 1-[(1R,2S,5R)-Menthyloxy]-3,4-
dimethyl-3-phospholene 1-oxide (8a)

To 0.80 g (4.6 mmol) of 1-ethoxy-3,4-dimethoxy-3-
phospholene 1-oxide (6) in 20 mL of chloroform,
1.0 g (4.9 mmol) of phosphorus pentachloride was
added and the mixture was kept at reflux for 2.5 h.
After filtration and evaporation of the volatiles, phos-
phinic chloride 7 was dissolved in 20 mL of toluene.
To the solution so obtained, 0.65 mL (4.7 mmol) of
triethylamine and 0.79 g (5.1 mmol) of (1R,2S,5R)-
(–)-menthol were added and the mixture was stirred
for 16 h. After filtration, the product was purified
by column chromatography (silica gel, 2% methanol
in chloroform) to give 1.3 g of 8a as colorless oil.
[α]25

D = −104.0 (c 0.4, CH2Cl2); 31P NMR (CDCl3) δ

66.6; 13C NMR (CDCl3) δ 15.7 (C5′ CH3), 16.2 (J =
4.2, CH3), 16.4 (J = 4.0, CH3), 20.6 (CHCH3), 21.7
(CHCH3), 22.8 (C3′), 25.6 (C5′), 31.2 (CHMe2), 33.8
(C4′), 36.1 (J = 91.4, C5), 37.3 (J = 93.4, C2), 43.2
(C6′), 48.2 (J = 6.3, C2′), 76.2 (J = 7.4, C1′), 127.0 (J
= 13.1, C3), 127.3 (J = 12.7, C4); 1H NMR (CDCl3) δ

0.81 (d, J = 6.8, 3H, C5′ CH3), 0.91 (d, J = 6.0, 6H,
CH(CH3)2), 1.72 (s, 6H, C3 CH3), 2.32–2.60 (m, 4H,

CH2PCH2), 4.15–4.35 (m, 2H, OCH); HRMS, [M +
H]+

found = 285.1964, C16H30O2P requires 285.1983.

Synthesis of 1-[(1S)-1-Phenylethylamino)]-3,4-
dimethyl-3-phospholene 1-oxide (8b)

To 0.80 g (4.6 mmol) of l-ethoxy-3,4-dimethoxy-3-
phospholene 1-oxide (6) in 20 mL of chloroform,
1.0 g (4.9 mmol) of phosphorus pentachloride was
added and the mixture was kept at reflux for 6 h. Af-
ter filtration and evaporation of the volatiles, phos-
phinic chloride 7 was dissolved in 20 mL of toluene.
To the solution so obtained, 1.2 mL (9.2 mmol) of
(S)-α-phenylethylamine was added and the mixture
was stirred for 16 h. After filtration, the product was
purified by column chromatography (silica gel, 3%
methanol in chloroform) to give 0.93 g (81%) of 8b as
colorless oil. [α]25

D = +103.0 (c 0.4, CH2Cl2); 31P NMR
(CDCl3) δ 55.3; 13C NMR (CDCl3) δ 16.1 (CHCH3),
16.3 (CHCH3), 25.8 (J = 6.2, C3 CH3), 36.9 (J = 83.5,
C5), 37.6 (J = 83.2, C2), 50.6 (CHMe), 125.7 (C2′),∗

126.9 (C4′), 127.4 (J = 11.6, C3), 128.3 (C3′),∗ 145.1
(J = 2.9, C1′), ∗may be reversed; 1H NMR (CDCl3)
δ 1.51 (d, J = 6.6, 3H, CHCH3), 1.52 (s, 3H, CH3),
1.59 (s, 3H, CH3), 2.08–2.25 (m, 2H, CH2), 2.30–2.52
(m, 2H, CH2), 2.88 (bs, 1H, NH), 4.31–4.51 (m, 1H,
CH), 7.20–7.39 (m, 5H, Ar). HRMS, [M + H]+

found =
250.1347, C14H21NOP requires 250.1361.

Synthesis of 6,6-Dichloro-3-[(1R,2S,5R)-
menthyloxy]-1-methyl-3-phosphabicyclo-
[3.1.0]hexane 3-oxide (4a)

To the mixture of 2.0 g (7.4 mmol) of 1-[(1R,2S,5R)-
menthyloxy]-3-methyl-3-phospholene 1-oxide (3a)
and 0.20 g (0.80 mmol) of TEBAC in 40 mL of chlo-
roform, a solution of NaOH (5.5 g of NaOH in 7 mL
of water) was added dropwise and the mixture was
kept at reflux for 3 h. The mixture was cooled to 26◦C,
filtrated, the organic phase separated and made up
to its original volume. To the solution, 0.10 g (0.40
mmol) of TEBAC and 5.5 g of NaOH in 7 mL of wa-
ter were added and the mixture was kept at reflux
for 3 h. The mixture was cooled and filtrated; the
organic phase was separated and concentrated. The
crude product so obtained was purified by column
chromatography (silica gel, 2% methanol in chloro-
form) to give 0.50 g (19%) of 4a consisting of iso-
mers A1 (30%), A2 (29%), B1 (21%), and B2 (20%)
as a colorless oil. Repeated chromatography led to a
fraction containing only isomers A1 (50%) and A2

(50%). [α]25
D = −46.0 (c 1, CHCl3); HRMS, [M +

H]+
found = 353.1176, C16H28Cl2O2P requires 353.1204

for the 35Cl isotopes.

Heteroatom Chemistry DOI 10.1002/hc
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Isomer A1: 31P NMR (CDCl3) δ 81.0; 13C NMR
(CDCl3) δ 15.7 (C5′ CH3), 20.8 (CHCH3), 21.7
(J = 7.8, C1 CH3),A 21.9 (CHCH3), 22.9 (C3′),B 25.9
(C5′), 27.7 (J = 91.0, C2),C 31.1 (J = 12.6, C1), 31.4
(CHMe2), 32.5 (J = 94.3, C4),E 33.3 (J = 12.4, C5),D

34.0 (C4′), 42.9 (C6′),F 48.3 (J = 5.9, C2′), 72.2 (J =
14.1, C6).

Isomer A2: 31P NMR (CDCl3) δ 81.1; 13C NMR
(CDCl3) δ 15.7 (C5′ CH3), 20.8 (CHCH3), 21.8
(J = 7.5, C1 CH3),A 21.9 (CHCH3), 22.8 (C3′),B 25.9
(C5′), 26.7 (J = 92.2, C2),C 31.1 (J = 12.6, C1), 31.4
(CHMe2), 32.6 (J = 12.6, C5),D 33.5 (J = 91.0, C4),E

34.0 (C4′), 43.0 (C6′),F 48.3 (J = 5.9, C2′), 72.2 (J =
14.1, C6).

A−Fmay be reversed.
Isomer B1: 31P NMR (CDCl3) δ 85.7; 13C NMR

(CDCl3) δ 15.8 (C5′ CH3),a 21.0 (CHCH3), 21.6
(J = 7.7, C1 CH3),b 21.9 (CHCH3),c 22.9 (C3′),d 25.8
(C5′),f 27.0 (J = 88.9, C2),e 31.1 (J = 12.7, C1), 31.6
(CHMe2),g 32.6 (J = 90.9, C4),h 32.7 (J = 10.8, C5),i

34.0 (C4′), 43.6 (C6′),j 48.7 (J = 6.0, C2′),k 72.0 (J =
12.3, C6)l .

Isomer B2: 31P NMR (CDCl3) δ 86.2; 13C NMR
(CDCl3) δ 15.9 (C5′ CH3),a 21.0 (CHCH3), 21.5 (J
= 7.9, C1 CH3),b 22.0 (CHCH3),c 23.0 (C3′),d 25.3
(J = 91.4, C2),e 25.9 (C5′),f 31.1 (J = 12.7, C1), 31.5
(CHMe2),g 31.8 (J = 92.8, C4),h 32.4 (J = 11.2, C5),i

34.0 (C4′), 43.5 (C6′),j 48.6 (J = 5.8, C2′),k 72.1 (J =
12.1, C6)l .

a−lmay be reversed.

Synthesis of 6,6-Dichloro-3-[(1S)-
l-phenylethylamino]-1-methyl-3-
phosphabicyclo[3.1.0]hexane 3-oxide (4b)

To the mixture of 4.0 g (17.0 mmol) of 1-[(1S)-1-
phenylethylamino]-3-methyl-3-phospholene 1-oxide
(3b) and 1.36 g (6.0 mmol) of TEBAC in 80 mL of
chloroform, a solution of 26.0 g of NaOH in 28 mL
of water was added dropwise and the mixture was
kept at reflux for 3 h. The mixture was cooled and fil-
trated; the organic phase was separated and concen-
trated. The crude product so obtained was purified
by column chromatography (silica gel, 2% methanol
in chloroform) to give 1.0 g (19%) of 4b, consisting of
isomers A (36%), B (26%), C (29%), and D (9%) as a
colorless oil. Repeated chromatography led to a frac-
tion containing only isomers A (60%) and B (40%).
[α]25

D = −8.3 (c 1.3, CHCl3); HRMS, [M + H]+
found =

318.0586, C14H19Cl2NOP requires 318.0581 for the
35Cl isotopes.

Isomer A: 31P NMR (CDCl3) δ 75.7; 13C NMR
(CDCl3) δ 21.7 (J = 7.1, C1 CH3), 25.6 (J = 85.9,
C4), 26.2 (J = 5.3, CH CH3), 31.7 (J = 12.6, C1),
32.8 (J = 84.9, C2), 33.2 (J = 10.6, C5), 50.3 (J = 1.4,

CH CH3), 72.4 (J = 13.7, C6), 125.7 (Cβ), 127.3 (Cδ),
128.6 (Cγ), 144.9 (J = 3.2, Cα); 1H NMR (CDCl3) δ

1.52 (s, 3H, C1 CH3), 1.55 (d, J = 6.9, 3H, CH CH3),
7.27 7.38 (m, 5H, Ar).

Isomer B: 31P NMR (CDCl3) δ 75.9; 13C NMR
(CDCl3) δ 21.3 (J = 7.3, C1 CH3), 27.2 (J = 84.1,
C4), 26.0 (J = 5.4, CH CH3), 31.5 (J = 86.4, C2),
31.9 (J = 12.3, C1), 33.3 (J = 11.1, C5), 50.4 (J = 1.3,
CH CH3), 72.5 (J = 12.6, C6), 126.0 (Cβ), 127.4 (Cδ),
128.6 (Cγ ), 144.8 (J = 3.4, Cα); 1H NMR (CDCl3) δ

1.52 (s, 3H, C1 CH3), 1.55 (d, J = 6.9, 3H, CH CH3),
7.27–7.38 (m, 5H, Ar).

Isomer C: 31P NMR (CDCl3) δ 74.2.
Isomer D: 31P NMR (CDCl3) δ 74.9.

Synthesis of 3- and 5-Methyl-4-chloro-1-[(1R,2S,
5R)-menthyloxy]-1,2-dihydrophosphinine
1-oxides (5Aa and 5Ba)

A mixture of 3.3 g (9.4 mmol) of dichlorcyclopropane
derivative 4a consisting of isomers A1 (30%), A2

(29%), B1 (21%), and B2 (20%) and 1.4 ml (10.0
mmol) of triethylamine in 50 mL of dry toluene was
stirred at the boiling point for 10 h. Then the pre-
cipitated salt was filtered off and the filtrate concen-
trated in vacuum. The crude product so obtained was
purified by repeated column chromatography ((1)
3% methanol in chloroform and (2) ethyl acetate–
hexane 3:1, using silica gel as the absorbent) to
give 1.8. g (61%) of the title product 5a as a mix-
ture of four isomers (5Aa1: 34%, 5Aa2: 42%, 5Ba1:
13%, and 5Ba2 11%). [α]25

D = −57.0 (c 1.0, CHCl3);
HRMS, [M + H]+

found = 317.1447, C16H27ClO2P re-
quires 317.1437 for the 35Cl isotope.

For major isomers 5Aa1 and 5Aa2: 31P NMR
(CDCl3) δ 31.0 (34%) and 31.2 (42%); 13C NMR
(CDCl3) δ 15.78, 15.85 (C5′ CH3), 20.8 (CHCH3), 21.8
(CHCH3), 22.8, 22.9 (C3′),∗ 23.4 (J = 10.4) (C3 CH3),
25.5, 25.8 (C5′), 31.5 (CHMe2), 33.9 (C4′),∗ 34.0 (J =
99.8), 34.9 (J = 100.2) (C2), 43.67, 43.9 (C6′), 48.3
(J = 7.1), 48.4 (J = 7.0) (C2′), 76.8 (J = 7.2), 77.0
(J = 7.5) (C1′), 119.6 (J = 121.2), 120.8 (J = 121.0)
(C6), 123.3, (J = 21.9) (C3), 131.9 (J = 8.6), 132.2
(J = 8.9) (C4), 143.9, 144.6 (C5); 1H NMR (CDCl3)
δ 0.76 (d, J = 6.0), 0.83 (d, J = 5.6, 3H) (CHCH3),
0.92 (d, J = 5.5, CH(CH3)2), 2.03 (s, C3 CH3), 6.07
(t, 2 JPH = 3 JHH = 10.0, C6H), 6.70 (dd, 3 JPH = 39.6,
3 JHH = 12.8, C5H); ∗tentative assignment.

For minor isomers 5Ba1 and 5Ba2: 31P NMR
(CDCl3) δ 30.1 (13%) and 30.2 (11%); 13C NMR
(CDCl3) δ 15.6, 15.85 (C5′ CH3), 20.9 (CHCH3), 21.9
(CHCH3), 22.7, 22.8 (C3′),∗ 24.6 (J = 5.6), 24.8 (J
= 5.8) (C5 CH3), 25.4, 25.7 (C5′), 28.4 (J = 99.0),
29.1 (J = 100.4) (C2), 31.5 (CHMe2), 33.9 (C4′),∗

43.71 (C6′), 48.4 (J = 7.0), 48.5 (J = 10.8) (C2′), 76.6
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(J = 4.0), 76.7 (J = 4.0) (C1′), 118.9 (J = 125.8),
120.0 (J = 126.1) (C6), 123.4 (J = 8.0), 123.8 (J =
10.5) (C3), 131.2 (J = 2.0), 131.5 (J = 2.0) (C4), 149.8
(J = 1.6), 150.7 (J = 1.6) (C5); 1H NMR (CDCl3) δ 0.92
(d, J = 5.5, CH(CH3)2), 2.12 (s, C5 CH3); ∗tentative
assignment.

Synthesis of 4-Dichloromethylene-3,5-dimethyl-
1-[(1R,2S,5R)-menthyloxy]-1,4-
dihydrophosphinine l-oxide (12a)

To the mixture of 0.76 g (2.7 mmol) of 1-[(1R,2S,5R)-
menthyloxy]-3,4-dimethyl-3-phospholene l-oxide (8)
and 0.035 g (0.15 mmol) of TEBAC in 5 mL of chlo-
roform, a solution of 4.0 g (0.10 mol) of NaOH in
4 mL of water was added dropwise and the mixture
was kept at reflux for 3 h. The mixture was cooled to
26◦C and filtrated; the organic phase was separated
and concentrated. The crude product so obtained
was purified by column chromatography (silica gel,
2% methanol in chloroform) to give 0.33 g (33%) of
12a as a colorless oil.

[α]25
D = −59.6 (c 1.0, CHCl)3; 31P NMR (CDCl3)

δ 18.0; 13C NMR (CDCl3) δ 15.8 (C5′ CH3′), 20.8
(CHCH3), 21.7 (CHCH3)), 22.7 (C3′), 23.4 (J = 16.3,
C3 CH3), 23.6 (J = 16.0, C5 CH3), 25.1 (C5′), 31.4
(CHMe2), 33.8 (C4′), 43.3 (C6′), 48.5 (J = 6.5, C2′), 77.3
(J = 7.5, C1′), 122.7 (J = 128.0, C2), 122.8 (J = 130.1,
C6), 123.8 (J = 4.2, CCl2), 136.5 (J = 24.4, C4), 154.3
(J = 15.2, C3, C5); 1H NMR (CDCl3) δ 0.76 (d, 3H, J =
6.9, C5′ CH3), 0.89 (d, 3H, J = 7.0, CH(CH3)2), 0.91
(d, 3H, J = 6.4, CH(CH3)2), 2.32 (s, 6H, C3 CH3), 4.02
(dq, J1 = 9.8, J2 = 4.5, 3H, OCH), 5.99 (d, J = 10.5,
1H, C2H), 6.03 (d, J = 10.6, 1H, C6H); HRMS, [M +
H]+

found = 377.1214, C18H28Cl2O2P requires 377.1204.
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